"Computational thinking builds on the power and limits of computing processes, whether they are executed by a human or by a machine. Computational methods and models give us the courage to solve problems and design systems that no one of us would be capable of tackling alone. Computational thinking confronts the riddle of machine intelligence: What can humans do better than computers? and What can computers do better than humans? Most fundamentally it addresses the question: What is computable? Today, we know only parts of the answers to such questions.
Computational thinking is a fundamental skill for everyone, not just for computer scientists. To reading, writing, and arithmetic, we should add computational thinking to every child’s analytical ability. Just as the printing press facilitated the spread of the three Rs, what is appropriately incestuous about this vision is that computing and computers facilitate the spread of computational thinking.
Computational thinking involves solving problems, designing systems, and understanding human behavior, by drawing on the concepts fundamental to computer science. Computational thinking includes a range of mental tools that reflect the breadth of the field of computer science.
Having to solve a particular problem, we might ask: How difficult is it to solve? and What’s the best way to solve it? Computer science rests on solid theoretical underpinnings to answer such questions precisely. Stating the difficulty of a problem accounts for the underlying power of the machine—the computing device that will run the solution. We must consider the machine’s instruction set, its resource constraints, and its operating environment."
-Jeannette M. Wing (2006), Computational Thinking, Communications of the ACM (pp.33-35)-
Click HERE to read more.
Below is Prof. Jeannette Wing's lecture on the definition and importance of computational thinking, one of the most important thinking for everyone to adapt to the Industrial Revolution 4.0.